Search results
Results from the WOW.Com Content Network
Coulomb friction, named after Charles-Augustin de Coulomb, is an approximate model used to calculate the force of dry friction. It is governed by the model: , where is the force of friction exerted by each surface on the other. It is parallel to the surface, in a direction opposite to the net applied force.
Equation for the velocity of a body in viscous fluid. In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds ...
Drag equation. In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is: where. F d {\displaystyle F_ {\rm {d}}} is the drag force, which is by definition the force component in the direction of the flow velocity,
The force between a fluid and a body, when there is relative motion, can only be transmitted by normal pressure and tangential friction stresses. So, for the whole body, the drag part of the force, which is in-line with the approaching fluid motion, is composed of frictional drag (viscous drag) and pressure drag (form drag).
Drag (physics) In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. [1] This can exist between two fluid layers, two solid surfaces, or between a fluid and a solid surface. Drag forces tend to decrease fluid velocity ...
Darcy friction factor formulae. In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow. The Darcy friction factor is also known as ...
Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation (or movement) of the wheel, roadbed, etc., is recovered when the pressure is removed.
The capstan equation[1] or belt friction equation, also known as Euler–Eytelwein formula[2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan). [4][1] It also applies for fractions of one turn as occur with rope drives ...