Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
The HD gene [8] is found in all human genomes. In the event that a slippage event occurs there can be a large expansion in the tandem repeats of the HD gene. [8] An individual who is not affected by Huntington's disease will have 6-35 tandem repeats at the HD locus. However, an affected individual will have 36- 121 repeats present. [7]
Furthermore, one can assess whether the folding proceeds according to a two-state unfolding as described above. This can be done with differential scanning calorimetry by comparing the calorimetric enthalpy of denaturation i.e. the area under the peak, A peak {\displaystyle A_{\text{peak}}} to the van 't Hoff enthalpy described as follows:
For DNA oligonucleotides, i.e. short sequences of DNA, the thermodynamics of hybridization can be accurately described as a two-state process. In this approximation one neglects the possibility of intermediate partial binding states in the formation of a double strand state from two single stranded oligonucleotides. Under this assumption one ...
The procedure involves heating a sample of genomic DNA until it denatures into the single stranded-form, and then slowly cooling it, so the strands can pair back together. While the sample is cooling, measurements are taken of how much of the DNA is base paired at each temperature.
The schematic diagram indicates the roles of insufficient DNA repair in aging and cancer, and the role of apoptosis in cancer prevention. An excess of naturally occurring DNA damage, due to inherited deficiencies in particular DNA repair enzymes, can cause premature aging or increased risk for cancer (see DNA repair-deficiency disorder).
Polymerase chain reaction is a process that can amplify segments of DNA and is often used on extracted ancient DNA. It has three main steps: denaturation, annealing, and extension. Denaturation splits the DNA into two single strands at high temperatures.
The phage gene 52 protein shares homology with the bacterial gyrase gyrA subunit [18] and the phage gene 39 protein shares homology with the gyrB subunit. [19] Since the host E. coli DNA gyrase can partially compensate for the loss of the phage gene products, mutants defective in either genes 39, 52 or 60 do not completely abolish phage DNA ...