Search results
Results from the WOW.Com Content Network
A definition of "matter" based on its physical and chemical structure is: matter is made up of atoms. [17] Such atomic matter is also sometimes termed ordinary matter. As an example, deoxyribonucleic acid molecules (DNA) are matter under this definition because they are made of atoms.
A state of matter is also characterized by phase transitions. A phase transition indicates a change in structure and can be recognized by an abrupt change in properties. A distinct state of matter can be defined as any set of states distinguished from any other set of states by a phase transition.
An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship. These classifications are in general only valid in cases when smaller subdivisions of the sample do not interact in some physical or chemical process when combined.
Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness, η. By contrast, an extensive property or extensive quantity is one whose magnitude is additive for subsystems. [4] Examples include mass, volume and entropy. [5] Not all properties of matter fall into these two categories.
Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate
Chemistry is the scientific study of the properties and behavior of matter. [1] It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances.
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong ...
By contrast, strongly interacting particles like slow electrons and molecules require vacuum: the matter wave properties rapidly fade when they are exposed to even low pressures of gas. [67] With special apparatus, high velocity electrons can be used to study liquids and gases. Neutrons, an important exception, interact primarily by collisions ...