enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    Look up trapezoid in Wiktionary, the free dictionary. In geometry, a trapezoid (/ ˈtræpəzɔɪd /) in North American English, or trapezium (/ trəˈpiːziəm /) in British English, [1][2] is a quadrilateral that has one pair of parallel sides. The parallel sides are called the bases of the trapezoid.

  3. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the ...

  4. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius ...

  5. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    In Euclidean geometry, an isosceles trapezoid (isosceles trapezium in British English) is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, [1] or as a trapezoid ...

  6. Garfield's proof of the Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Garfield's_proof_of_the...

    Garfield in 1881. Garfield's proof of the Pythagorean theorem is an original proof the Pythagorean theorem invented by James A. Garfield (November 19, 1831 – September 19, 1881), the 20th president of the United States. The proof appeared in print in the New-England Journal of Education (Vol. 3, No.14, April 1, 1876). [1][2] At the time of ...

  7. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem is a theorem of affine geometry, in the sense that it may be stated and proved without using the concepts of angles, areas, and lengths (except for the ratio of the lengths of two line segments that are collinear). It is therefore true for triangles in any affine plane over any field.

  8. Egyptian geometry - Wikipedia

    en.wikipedia.org/wiki/Egyptian_geometry

    This is solved by using the approximation that circular field of diameter 9 has the same area as a square of side 8. Problem 52 finds the area of a trapezium with (apparently) equally slanting sides. The lengths of the parallel sides and the distance between them being the given numbers. [11] Hemisphere:

  9. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Isosceles trapezium (UK) or isosceles trapezoid (US): one pair of opposite sides are parallel and the base angles are equal in measure. Alternative definitions are a quadrilateral with an axis of symmetry bisecting one pair of opposite sides, or a trapezoid with diagonals of equal length. Parallelogram: a quadrilateral with two pairs of ...