Search results
Results from the WOW.Com Content Network
An ectotherm (from the Greek ἐκτός (ektós) "outside" and θερμός (thermós) "heat"), more commonly referred to as a "cold-blooded animal", [1] is an animal in which internal physiological sources of heat, such as blood, are of relatively small or of quite negligible importance in controlling body temperature. [2]
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Excel offers many user interface tweaks over the earliest electronic spreadsheets; however, the essence remains the same as in the original spreadsheet software, VisiCalc: the program displays cells organized in rows and columns, and each cell may contain data or a formula, with relative or absolute references to other cells. Excel 2.0 for ...
Gigantothermy (sometimes called ectothermic homeothermy or inertial homeothermy) is a phenomenon with significance in biology and paleontology, whereby large, bulky ectothermic animals are more easily able to maintain a constant, relatively high body temperature than smaller animals by virtue of their smaller surface-area-to-volume ratio. [1]
In general, warm-bloodedness refers to three separate categories of thermoregulation.. Endothermy [a] is the ability of some creatures to control their body temperatures through internal means such as muscle shivering or increasing their metabolism.
In biology, thermoregulation is the ability of an organism to maintain its body temperature, and the term "endotherm" refers to an organism that can do so from "within" by using the heat released by its internal bodily functions (vs. an "ectotherm", which relies on external, environmental heat sources) to maintain an adequate temperature. [14]
From January 2008 to December 2012, if you bought shares in companies when Joyce M. Roché joined the board, and sold them when she left, you would have a -18.8 percent return on your investment, compared to a -2.8 percent return from the S&P 500.
A plot illustrating the dependence on temperature of the rates of chemical reactions and various biological processes, for several different Q 10 temperature coefficients. . The rate ratio at a temperature increase of 10 degrees (marked by points) is equal to the Q 10 coefficie