Search results
Results from the WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
A Dask array comprises many smaller n-dimensional Numpy arrays and uses a blocked algorithm to enable computation on larger-than-memory arrays. During an operation, Dask translates the array operation into a task graph, breaks up large Numpy arrays into multiple smaller chunks, and executes the work on each chunk in parallel.
The library NumPy can be used for manipulating arrays, SciPy for scientific and mathematical analysis, Pandas for analyzing table data, Scikit-learn for various machine learning tasks, NLTK and spaCy for natural language processing, OpenCV for computer vision, and Matplotlib for data visualization. [3]
QuTiP, short for the Quantum Toolbox in Python, is an open-source computational physics software library for simulating quantum systems, particularly open quantum systems. [1] [2] QuTiP allows simulation of Hamiltonians with arbitrary time-dependence, allowing simulation of situations of interest in quantum optics, ion trapping, superconducting circuits and quantum nanomechanical resonators.
Unlike object orientation which implicitly breaks down data to its constituent parts (or scalar quantities), array orientation looks to group data and apply a uniform handling. Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be ...
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
The array classes are fully compatible with the array features of Matlab and numpy, including internal storage order, subarray creation, expansion, and advanced indexing. Higher level functionality is provided by toolboxes for interpolation , optimization , statistics , HDF5 and machine learning .