enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .

  3. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n.

  4. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The term Fibonacci sequence is also applied more generally to any function from the integers to a field for which (+) = + (+).These functions are precisely those of the form () = () + (), so the Fibonacci sequences form a vector space with the functions () and () as a basis.

  6. Wall–Sun–Sun prime - Wikipedia

    en.wikipedia.org/wiki/Wall–Sun–Sun_prime

    The k-Wall–Sun–Sun primes can be explicitly defined as primes p such that p 2 divides the k-Fibonacci number (()), where F k (n) = U n (k, −1) is a Lucas sequence of the first kind with discriminant D = k 2 + 4 and () is the Pisano period of k-Fibonacci numbers modulo p. [15]

  7. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. [3] The first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... .

  8. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The sequence of Lucas numbers (not to be confused with the generalized Lucas sequences, of which this is part) is like the Fibonacci sequence, in that each term is the sum of the previous two terms and , however instead starts with ⁠, ⁠ as the 0th and 1st terms and :

  9. Fibonacci prime - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_prime

    That is to say, the Fibonacci sequence is a divisibility sequence. F p is prime for 8 of the first 10 primes p; the exceptions are F 2 = 1 and F 19 = 4181 = 37 × 113. However, Fibonacci primes appear to become rarer as the index increases. F p is prime for only 26 of the 1229 primes p smaller than 10,000. [3]