Search results
Results from the WOW.Com Content Network
In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis. Important special cases include: exponential map (Riemannian geometry) for a manifold with a Riemannian metric, exponential map (Lie theory) from a Lie algebra to a Lie group,
The exponential map is a map ... Helgason, Sigurdur (2001), Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, ...
The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography. In Riemannian geometry, an exponential map is a map from a subset of a tangent space T p M of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical ...
In case G is a matrix Lie group, the exponential map reduces to the matrix exponential. The exponential map, denoted exp:g → G, is analytic and has as such a derivative ā d / dt ā exp(X(t)):Tg → TG, where X(t) is a C 1 path in the Lie algebra, and a closely related differential dexp:Tg → TG. [2]
In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p.
The exponential map is a mapping from the tangent space at p to M: : which is a diffeomorphism in a neighborhood of zero. Gauss' lemma asserts that the image of a sphere of sufficiently small radius in T p M under the exponential map is perpendicular to all geodesics originating at p.
The exponential map is defined by exp p (v) = c v (1) and gives a diffeomorphism between a disc āvā < δ and a neighbourhood of p; more generally the map sending (p, v) to exp p (v) gives a local diffeomorphism onto a neighbourhood of (p, p). The exponential map gives geodesic normal coordinates near p. [63]
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!