enow.com Web Search

  1. Ads

    related to: exponential map in differential geometry practice

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential map - Wikipedia

    en.wikipedia.org/wiki/Exponential_map

    In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis. Important special cases include: exponential map (Riemannian geometry) for a manifold with a Riemannian metric, exponential map (Lie theory) from a Lie algebra to a Lie group,

  3. Exponential map (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Exponential_map...

    The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography. In Riemannian geometry, an exponential map is a map from a subset of a tangent space T p M of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical ...

  4. Derivative of the exponential map - Wikipedia

    en.wikipedia.org/wiki/Derivative_of_the...

    The inverse function theorem together with the derivative of the exponential map provides information about the local behavior of exp. Any C k, 0 ≤ k ≤ ∞, ω map f between vector spaces (here first considering matrix Lie groups) has a C k inverse such that f is a C k bijection in an open set around a point x in the domain provided df x is

  5. Exponential map (Lie theory) - Wikipedia

    en.wikipedia.org/wiki/Exponential_map_(Lie_theory)

    It is the exponential map of a canonical right-invariant affine connection on G. This is usually different from the canonical left-invariant connection, but both connections have the same geodesics (orbits of 1-parameter subgroups acting by left or right multiplication) so give the same exponential map.

  6. Gauss's lemma (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(Riemannian...

    In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space ...

  7. Cartan–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cartan–Hadamard_theorem

    The Cartan–Hadamard theorem in conventional Riemannian geometry asserts that the universal covering space of a connected complete Riemannian manifold of non-positive sectional curvature is diffeomorphic to R n. In fact, for complete manifolds of non-positive curvature, the exponential map based at any point of the manifold is a covering map.

  8. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p.

  9. Lie theory - Wikipedia

    en.wikipedia.org/wiki/Lie_theory

    The foundation of Lie theory is the exponential map relating Lie algebras to Lie groups which is called the Lie group–Lie algebra correspondence. The subject is part of differential geometry since Lie groups are differentiable manifolds .

  1. Ads

    related to: exponential map in differential geometry practice