Search results
Results from the WOW.Com Content Network
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.
See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations. A–F Name ...
Nonlinear algebra is the nonlinear analogue to linear algebra, generalizing notions of spaces and transformations coming from the linear setting. [1] Algebraic geometry is one of the main areas of mathematical research supporting nonlinear algebra, while major components coming from computational mathematics support the development of the area ...
In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms.They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture.
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
The Navier–Stokes equations are nonlinear partial differential equations in the general case and so remain in almost every real situation. [ 23 ] [ 24 ] In some cases, such as one-dimensional flow and Stokes flow (or creeping flow), the equations can be simplified to linear equations.
Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations, (,) = [1]The parameter is usually a real scalar and the solution is an n-vector.