Search results
Results from the WOW.Com Content Network
A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
Backward finite difference [ edit ] To get the coefficients of the backward approximations from those of the forward ones, give all odd derivatives listed in the table in the previous section the opposite sign, whereas for even derivatives the signs stay the same.
The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.
Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...
A finite difference scheme is stable if the errors made at one time step of the calculation do not cause the errors to be magnified as the computations are continued. A neutrally stable scheme is one in which errors remain constant as the computations are carried forward. If the errors decay and eventually damp out, the numerical scheme is said ...
Consider a numerical approximation , where is a parameter characterizing the approximation, such as the step size in a finite difference scheme or the diameter of the cells in a finite element method.
A finite difference (FD) model of a differential equation (DE) can be formed by simply replacing the derivatives with FD approximations. But this is a naive "translation." If we literally translate from English to Japanese by making a one-to-one correspondence between words, the original meaning is often lost.