enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths , bond angles , torsional angles and any other geometrical parameters that determine the position of each atom.

  3. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.

  4. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are arccos (− ⁠ 1 / 3 ⁠ ) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane ( CH 4 ) [ 1 ] [ 2 ] as well as its heavier analogues .

  5. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Valence shell electron pair repulsion (VSEPR) theory (/ ˈ v ɛ s p ər, v ə ˈ s ɛ p ər / VESP-ər, [1]: 410 və-SEP-ər [2]) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [3]

  6. Ammonia - Wikipedia

    en.wikipedia.org/wiki/Ammonia

    Molecular structure of ammonia and its three-dimensional shape. It has a net dipole moment of 1.484 D. Dot and cross structure of ammonia. The ammonia molecule has a trigonal pyramidal shape, as predicted by the valence shell electron pair repulsion theory (VSEPR theory) with an experimentally determined bond angle of 106.7°. [36]

  7. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    [11] [12] This electron distance maximization happens to achieve the most stable electron distribution. [11] [12] The result of VSEPR theory is being able to predict bond angles with accuracy. According to VSEPR theory, the geometry of a molecule can be predicted by counting how many electron pairs and atoms are connected to a central atom.

  8. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    In complexes of metals with these d-electron configurations, the non-bonding and anti-bonding molecular orbitals can be filled in two ways: one in which as many electrons as possible are put in the non-bonding orbitals before filling the anti-bonding orbitals, and one in which as many unpaired electrons as possible are put in. The former case ...

  9. Talk:VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/Talk:VSEPR_theory

    From memory the rule is that the odd electron (or "half electron pair") counts as a full electron pair for determining the basic shape, but takes up less space for determining the bond angle - ex. bent 134° in NO 2 vs. bent 120° (approx.) in NO 2-and 117-118° in ClO 2 vs. close to tetrahedral (109°) in ClO 2-.