Search results
Results from the WOW.Com Content Network
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
The speed-density relationship is linear with a negative slope; therefore, as the density increases the speed of the roadway decreases. The line crosses the speed axis, y, at the free flow speed, and the line crosses the density axis, x, at the jam density. Here the speed approaches free flow speed as the density approaches zero.
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
Mysterious 2 anomaly removed (File Upload Wizard) 11:01, 28 December 2015: No thumbnail: 0 × 0 (14 KB) Turningwoodintomarble: Caption added (File Upload Wizard) 00:55, 28 December 2015: No thumbnail: 0 × 0 (16 KB) Turningwoodintomarble: Caption added (File Upload Wizard) 19:29, 26 December 2015: 1,275 × 1,650 (11 KB) Turningwoodintomarble
In contrast to an average velocity, referring to the overall motion in a finite time interval, the instantaneous velocity of an object describes the state of motion at a specific point in time. It is defined by letting the length of the time interval Δ t {\displaystyle \Delta t} tend to zero, that is, the velocity is the time derivative of the ...
The figure shows a man on top of a train, at the back edge. At 1:00 pm he begins to walk forward at a walking speed of 10 km/h (kilometers per hour). The train is moving at 40 km/h. The figure depicts the man and train at two different times: first, when the journey began, and also one hour later at 2:00 pm.
The mean piston speed is the average speed of the piston in a reciprocating engine. It is a function of stroke and RPM. There is a factor of 2 in the equation to account for one stroke to occur in 1/2 of a crank revolution (or alternatively: two strokes per one crank revolution) and a '60' to convert seconds from minutes in the RPM term.
The formula for evaluating the drift velocity of charge carriers in a material of constant cross-sectional area is given by: [1] =, where u is the drift velocity of electrons, j is the current density flowing through the material, n is the charge-carrier number density, and q is the charge on the charge-carrier.