Search results
Results from the WOW.Com Content Network
An individual that is homozygous-recessive for a particular trait carries two copies of the allele that codes for the recessive trait. This allele, often called the "recessive allele", is usually represented by the lowercase form of the letter used for the corresponding dominant trait (such as, with reference to the example above, "p" for the ...
Illustration of some X-linked heredity outcomes (A) the affected father has one X-linked dominant allele, the mother is homozygous for the recessive allele: only daughters (all) will be affected. (B) the affected mother is heterozygous with one copy of the X-linked dominant allele: both daughters and sons will have 50% probability to be ...
An allele [1], or allelomorph, is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule. [2]Alleles can differ at a single position through single nucleotide polymorphisms (SNP), [3] but they can also have insertions and deletions of up to several thousand base pairs.
According to the model of Mendelian inheritance, alleles may be dominant or recessive, one allele is inherited from each parent, and only those who inherit a recessive allele from each parent exhibit the recessive phenotype. Offspring with either one or two copies of the dominant allele will display the dominant phenotype.
Thus, allele R is dominant over allele r, and allele r is recessive to allele R. [4] Dominance is not inherent to an allele or its traits . It is a strictly relative effect between two alleles of a given gene of any function; one allele can be dominant over a second allele of the same gene, recessive to a third, and co-dominant with a fourth.
X-linked recessive inheritance. X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be always expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation, see zygosity.
In the pea plant example, the capital "B" represents the dominant allele for purple blossom and lowercase "b" represents the recessive allele for white blossom. The pistil plant and the pollen plant are both F 1-hybrids with genotype "B b". Each has one allele for purple and one allele for white.
He was unable to produce any mice that were homozygous for the yellow agouti allele. It was not until 1910 that W. E. Castle and C. C. Little confirmed Cuénot's work, further demonstrating that one quarter of the offspring were dying during embryonic development. This was the first documented example of a recessive embryonic lethal allele.