Search results
Results from the WOW.Com Content Network
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
Difficult integrals may often be evaluated by changing variables; this is enabled by the substitution rule and is analogous to the use of the chain rule above. Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant . [ 1 ]
Pages in category "Differentiation rules" The following 11 pages are in this category, out of 11 total. ... Statistics; Cookie statement; Mobile view ...
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.
Since du is non-zero and the square of the Hodge star operator is −1 on 1-forms, du and dv must be linearly independent, so that u and v give local isothermal coordinates. The existence of isothermal coordinates can be proved by other methods, for example using the general theory of the Beltrami equation , as in Ahlfors (2006) , or by direct ...
It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be readily derived by integrating the product rule of differentiation. If u = u(x) and du = u ′ (x) dx, while v = v(x) and dv = v ′ (x) dx, then integration by parts states that:
In general statistics and probability, "divergence" generally refers to any kind of function (,), where , are probability distributions or other objects under consideration, such that conditions 1, 2 are satisfied. Condition 3 is required for "divergence" as used in information geometry.