Search results
Results from the WOW.Com Content Network
Left recursion often poses problems for parsers, either because it leads them into infinite recursion (as in the case of most top-down parsers) or because they expect rules in a normal form that forbids it (as in the case of many bottom-up parsers [clarification needed]). Therefore, a grammar is often preprocessed to eliminate the left recursion.
Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory.
A classic example of a problem which a regular grammar cannot handle is the question of whether a given string contains correctly nested parentheses. (This is typically handled by a Chomsky Type 2 grammar, also termed a context-free grammar .)
In computer programming, a parser combinator is a higher-order function that accepts several parsers as input and returns a new parser as its output. In this context, a parser is a function accepting strings as input and returning some structure as output, typically a parse tree or a set of indices representing locations in the string where parsing stopped successfully.
In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures (or a non-recursive equivalent) where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes. [1] [2]
A simple example for left recursion removal: The following production rule has left recursion on E E -> E '+' T E -> T This rule is nothing but list of Ts separated by '+'. In a regular expression form T ('+' T)*. So the rule could be rewritten as E -> T Z Z -> '+' T Z Z -> ε Now there is no left recursion and no conflicts on either of the rules.
Ukkonen's 1985 algorithm takes a string p, called the pattern, and a constant k; it then builds a deterministic finite state automaton that finds, in an arbitrary string s, a substring whose edit distance to p is at most k [13] (cf. the Aho–Corasick algorithm, which similarly constructs an automaton to search for any of a number of patterns ...
In computer science, an operator-precedence parser is a bottom-up parser that interprets an operator-precedence grammar.For example, most calculators use operator-precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN).