Search results
Results from the WOW.Com Content Network
Nowadays, MRI has all but replaced myelography. [4] MRI is preferable because injection of contrast medium into the spinal canal is infrequently needed for better images. However, a CT myelogram may be useful for patients who cannot undergo MRI (e.g., those with pacemakers or cochlear implants). CT is preferred when MRI images are limited by ...
Due to its sensitivity to venous blood SWI is commonly used in traumatic brain injuries (TBI) and for high resolution brain venographies but has many other clinical applications. SWI is offered as a clinical package by Philips and Siemens but can be run on any manufacturer's machine at field strengths of 1.0 T, 1.5 T, 3.0 T and higher.
A study begins with localisers to assist with image planning, and then a set of retrospectively-gated cine sequences to assess biventricular function in standard orientations. Contrast medium is given intravenously to assess myocardial perfusion and LGE. Phase contrast imaging may be used to quantify valvular regurgitant fraction and shunt volume.
Magnetic resonance angiography (MRA) is a group of techniques based on magnetic resonance imaging (MRI) to image blood vessels. Magnetic resonance angiography is used to generate images of arteries (and less commonly veins) in order to evaluate them for stenosis (abnormal narrowing), occlusions, aneurysms (vessel wall dilatations, at risk of rupture) or other abnormalities.
When water is in an environment where it can freely tumble, relaxation tends to take longer. In certain clinical situations, this can generate contrast between an area of pathology and the surrounding healthy tissue. To sensitize MRI images to diffusion, the magnetic field strength (B1) is varied linearly by a pulsed field gradient.
An injection of X-ray contrast medium is given to a patient via a needle or cannula into the vein, [7] typically in the antecubital fossa of arm. The contrast is excreted or removed from the bloodstream via the kidneys, and the contrast media becomes visible on X-rays almost immediately after injection.
The first study of the human brain at 3.0 T was published in 1994, [13] and in 1998 at 8 T. [14] Studies of the human brain have been performed at 9.4 T (2006) [15] and up to 10.5 T (2019). [16] Paul Lauterbur and Sir Peter Mansfield were awarded the 2003 Nobel Prize in Physiology or Medicine for their discoveries concerning MRI.
Hyperpolarized 129 Xe gas magnetic resonance imaging is a medical imaging technique used to visualize the anatomy and physiology of body regions that are difficult to image with standard proton MRI. In particular, the lung, which lacks substantial density of protons, is particularly useful to be visualized with 129 Xe gas MRI.