Search results
Results from the WOW.Com Content Network
According to the ideal gas law, pressure varies linearly with temperature and quantity, and inversely with volume: =, where: p is the absolute pressure of the gas, n is the amount of substance, T is the absolute temperature, V is the volume, R is the ideal gas constant.
Permanent gas is a term used for a gas which has a critical temperature below the range of normal human-habitable temperatures and therefore cannot be liquefied by pressure within this range. Historically such gases were thought to be impossible to liquefy and would therefore permanently remain in the gaseous state.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
The pressure and temperature of the gas are directly proportional: As temperature increases, the pressure of the propane gas increases by the same factor. A simple consequence of this proportionality is that on a hot summer day, the propane tank pressure will be elevated, and thus propane tanks must be rated to withstand such increases in pressure.
The squeeze-film pressure sensor is a type of MEMS resonant pressure sensor that operates by a thin membrane that compresses a thin film of gas at high frequency. Since the compressibility and stiffness of the gas film are pressure dependent, the resonance frequency of the squeeze-film pressure sensor is used as a measure of the gas pressure.
Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]
Stating the molar volume of a gas without indicating the reference conditions of temperature and pressure has very little meaning and can cause confusion. The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas ...