enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0.

  3. Line element - Wikipedia

    en.wikipedia.org/wiki/Line_element

    The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...

  4. Cantor function - Wikipedia

    en.wikipedia.org/wiki/Cantor_function

    For z = 1/3, the inverse of the function x = 2 C 1/3 (y) is the Cantor function. That is, y = y(x) is the Cantor function. In general, for any z < 1/2, C z (y) looks like the Cantor function turned on its side, with the width of the steps getting wider as z approaches zero.

  5. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.

  6. Tractrix - Wikipedia

    en.wikipedia.org/wiki/Tractrix

    The arc length of one branch between x = x 1 and x = x 2 is a ln ⁠ y 1 / y 2 ⁠. The area between the tractrix and its asymptote is ⁠ π a 2 / 2 ⁠, which can be found using integration or Mamikon's theorem. The envelope of the normals of the tractrix (that is, the evolute of the tractrix) is the catenary (or chain curve) given by y = a ...

  7. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.

  8. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). q {\displaystyle q} is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of x {\displaystyle x} , w {\displaystyle w ...

  9. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    1-forms and 1-vector fields: the 1-form a x dx + a y dy + a z dz corresponds to the vector field (a x, a y, a z). 1-forms and 2-forms: one replaces dx by the dual quantity dy ∧ dz (i.e., omit dx), and likewise, taking care of orientation: dy corresponds to dz ∧ dx = −dx ∧ dz, and dz corresponds to dx ∧ dy.

  1. Related searches how to calculate cantilever length of curve in calculus 1 with x value of 6

    how long is a curvewhat is a curve length