Search results
Results from the WOW.Com Content Network
There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0.
For z = 1/3, the inverse of the function x = 2 C 1/3 (y) is the Cantor function. That is, y = y(x) is the Cantor function. In general, for any z < 1/2, C z (y) looks like the Cantor function turned on its side, with the width of the steps getting wider as z approaches zero.
A curve in the complex plane is defined as a continuous function from a closed interval of the real line to the complex plane: : [,]. This definition of a curve coincides with the intuitive notion of a curve, but includes a parametrization by a continuous function from a closed interval.
For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. [1] [2] [3]
A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.
The word calculus is a Latin word, meaning originally "small pebble"; as such pebbles were used for calculation, the meaning of the word has evolved and today usually means a method of computation. Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change.
A week after cellphone users across the U.S. reported a flurry of racist text messages, members of the Hispanic and LGBTQ communities are now receiving text messages saying they have been selected ...
According to problem 25 in Kühnel's "Differential Geometry Curves – Surfaces – Manifolds", it is also true that two Bertrand curves that do not lie in the same two-dimensional plane are characterized by the existence of a linear relation a κ(t) + b τ(t) = 1 where κ(t) and τ(t) are the curvature and torsion of γ 1 (t) and a and b are ...