Search results
Results from the WOW.Com Content Network
The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. [3] There are no published methods to defeat the system if a large enough key is used.
In cryptography, the RSA problem summarizes the task of performing an RSA private-key operation given only the public key. The RSA algorithm raises a message to an exponent, modulo a composite number N whose factors are not known. Thus, the task can be neatly described as finding the e th roots of an arbitrary number, modulo N.
The first RSA numbers generated, from RSA-100 to RSA-500, were labeled according to their number of decimal digits. Later, beginning with RSA-576, binary digits are counted instead. An exception to this is RSA-617, which was created before the change in the numbering scheme.
RSA (cryptosystem) (Rivest–Shamir–Adleman), for public-key encryption RSA Conference, annual gathering; RSA Factoring Challenge, for factoring a set of semi-prime numbers; RSA numbers, with two prime numbers as factors
The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18, 1991 [1] to encourage research into computational number theory and the practical difficulty of factoring large integers and cracking RSA keys used in cryptography.
In cryptography, key size or key length refers to the number of bits in a key used by a cryptographic algorithm (such as a cipher).. Key length defines the upper-bound on an algorithm's security (i.e. a logarithmic measure of the fastest known attack against an algorithm), because the security of all algorithms can be violated by brute-force attacks.
In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories.It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography.
A deterministic encryption scheme (as opposed to a probabilistic encryption scheme) is a cryptosystem which always produces the same ciphertext for a given plaintext and key, even over separate executions of the encryption algorithm.