enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Sample-continuous process - Wikipedia

    en.wikipedia.org/wiki/Sample-continuous_process

    Let (Ω, Σ, P) be a probability space.Let X : I × Ω → S be a stochastic process, where the index set I and state space S are both topological spaces.Then the process X is called sample-continuous (or almost surely continuous, or simply continuous) if the map X(ω) : I → S is continuous as a function of topological spaces for P-almost all ω in Ω.

  4. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    The adjoint state space is chosen to simplify the physical interpretation of equation constraints. [3] Adjoint state techniques allow the use of integration by parts, resulting in a form which explicitly contains the physically interesting quantity. An adjoint state equation is introduced, including a new unknown variable.

  5. Particle filter - Wikipedia

    en.wikipedia.org/wiki/Particle_filter

    These two equations can be viewed as state space equations and look similar to the state space equations for the Kalman filter. If the functions g and h in the above example are linear, and if both W k {\displaystyle W_{k}} and V k {\displaystyle V_{k}} are Gaussian , the Kalman filter finds the exact Bayesian filtering distribution.

  6. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    10. Determination of the solvability of a Diophantine equation. 11. Quadratic forms with any algebraic numerical coefficients 12. Extensions of Kronecker's theorem on Abelian fields to any algebraic realm of rationality 13. Impossibility of the solution of the general equation of 7th degree by means of functions of only two arguments. 14.

  7. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    Thus the set of all states of M with the weak-* topology forms a compact Hausdorff space, known as the state space of M. In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected ...

  8. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or

  9. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.