enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The psychologist Adolf Zeising noted that the golden ratio appeared in phyllotaxis and argued from these patterns in nature that the golden ratio was a universal law. [92] Zeising wrote in 1854 of a universal orthogenetic law of "striving for beauty and completeness in the realms of both nature and art".

  3. Patterns in nature - Wikipedia

    en.wikipedia.org/wiki/Patterns_in_nature

    In disc phyllotaxis as in the sunflower and daisy, the florets are arranged along Fermat's spiral, but this is disguised because successive florets are spaced far apart, by the golden angle, 137.508° (dividing the circle in the golden ratio); when the flowerhead is mature so all the elements are the same size, this spacing creates a Fibonacci ...

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same ...

  5. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    A Fibonacci spiral approximates the golden spiral using quarter-circle arcs inscribed in squares derived from the Fibonacci sequence. A golden spiral with initial radius 1 is the locus of points of polar coordinates ( r , θ ) {\displaystyle (r,\theta )} satisfying r = φ 2 θ / π , {\displaystyle r=\varphi ^{2\theta /\pi },} where φ ...

  6. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers.

  7. Golden angle - Wikipedia

    en.wikipedia.org/wiki/Golden_angle

    The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...

  8. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    The golden ratio and the golden angle ... The angle 137.508° is the golden angle which is approximated by ratios of Fibonacci numbers ... Patterns in nature; Spiral ...

  9. Solving the Riddle of Phyllotaxis - Wikipedia

    en.wikipedia.org/wiki/Solving_the_Riddle_of_Phyl...

    Solving the Riddle of Phyllotaxis: Why the Fibonacci Numbers and the Golden Ratio Occur in Plants is a book on the mathematics of plant structure, and in particular on phyllotaxis, the arrangement of leaves on plant stems. It was written by Irving Adler, and published in 2012 by World Scientific.