Search results
Results from the WOW.Com Content Network
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).
In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium.For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable attenuation rates.
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
The mass attenuation coefficient (also called "mass extinction coefficient"), which is the absorption coefficient divided by density; The absorption cross section and scattering cross-section, related closely to the absorption and attenuation coefficients, respectively "Extinction" in astronomy, which is equivalent to the attenuation coefficient
In physics, absorption cross-section is a measure of the probability of an absorption process. More generally, the term cross-section is used in physics to quantify the probability of a certain particle-particle interaction, e.g., scattering , electromagnetic absorption , etc. (Note that light in this context is described as consisting of ...
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles.
Pair production is the relativistic phenomenon where the energy of a photon is converted into an electron-positron pair. The created electron and positron will then further interact with the scintillating material to generate energetic electron and holes. The attenuation coefficient contribution for pair production is given by: [8] [9]
The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...