enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aggregate function - Wikipedia

    en.wikipedia.org/wiki/Aggregate_function

    Common aggregate functions include: Average (i.e., arithmetic mean) Count; Maximum; Median; Minimum; Mode; Range; Sum; Others include: Nanmean (mean ignoring NaN values, also known as "nil" or "null") Stddev; Formally, an aggregate function takes as input a set, a multiset (bag), or a list from some input domain I and outputs an element of an ...

  3. Grouped data - Wikipedia

    en.wikipedia.org/wiki/Grouped_data

    Another method of grouping the data is to use some qualitative characteristics instead of numerical intervals. For example, suppose in the above example, there are three types of students: 1) Below normal, if the response time is 5 to 14 seconds, 2) normal if it is between 15 and 24 seconds, and 3) above normal if it is 25 seconds or more, then the grouped data looks like:

  4. Aggregate (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Aggregate_(data_warehouse)

    An aggregate is a type of summary used in dimensional models of data warehouses to shorten the time it takes to provide answers to typical queries on large sets of data. The reason why aggregates can make such a dramatic increase in the performance of a data warehouse is the reduction of the number of rows to be accessed when responding to a query.

  5. Group by (SQL) - Wikipedia

    en.wikipedia.org/wiki/Group_by_(SQL)

    Typically, grouping is used to apply some sort of aggregate function for each group. [1] [2] The result of a query using a GROUP BY statement contains one row for each group. This implies constraints on the columns that can appear in the associated SELECT clause. As a general rule, the SELECT clause may only contain columns with a unique value ...

  6. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The values of can be found with the quantile function where = for the first quartile, = for the second quartile, and = for the third quartile. The quantile function is the inverse of the cumulative distribution function if the cumulative distribution function is monotonically increasing because the one-to-one correspondence between the input ...

  7. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    The studentized bootstrap, also called bootstrap-t, is computed analogously to the standard confidence interval, but replaces the quantiles from the normal or student approximation by the quantiles from the bootstrap distribution of the Student's t-test (see Davison and Hinkley 1997, equ. 5.7 p. 194 and Efron and Tibshirani 1993 equ 12.22, p. 160):

  8. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    Here we capture the fact that the quantile function returns the minimum value of x from amongst all those values whose c.d.f value exceeds p, which is equivalent to the previous probability statement in the special case that the distribution is continuous. The quantile is the unique function satisfying the Galois inequalities

  9. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    To quantile normalize two or more distributions to each other, without a reference distribution, sort as before, then set to the average (usually, arithmetic mean) of the distributions. So the highest value in all cases becomes the mean of the highest values, the second highest value becomes the mean of the second highest values, and so on.