Search results
Results from the WOW.Com Content Network
The stretch factor is important in the theory of geometric spanners, weighted graphs that approximate the Euclidean distances between a set of points in the Euclidean plane. In this case, the embedded metric S is a finite metric space, whose distances are shortest path lengths in a graph, and the metric T into which S is embedded is the ...
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).
Horizontal stretch Bit 5: Vertical shrink Bit 4: Vertical stretch Bits 3–0: ... [21] published in February 2022 and includes a new formula to calculate Video Timing ...
A stretch in the xy-plane is a linear transformation which enlarges all distances in a particular direction by a constant factor but does not affect distances in the perpendicular direction. We only consider stretches along the x-axis and y-axis. A stretch along the x-axis has the form x' = kx; y' = y for some positive constant k.
The stretch ratio or extension ratio (symbol λ) is an alternative measure related to the extensional or normal strain of an axially loaded differential line element. It is defined as the ratio between the final length l and the initial length L of the material line.
According to the section of tension correction some tapes are calibrated for sag at standard tension. These tapes will require complex sag and tension corrections if used at non-standard tensions. The correction due to sag must be calculated separately for each unsupported stretch separately and is given by:
Investors are focused on the potential extension of the stock market's bull rally heading into 2025. Wall Street experts highlighted the most important stock market charts to watch into next year.
In simple contexts, a single number may suffice to describe the strain, and therefore the strain rate. For example, when a long and uniform rubber band is gradually stretched by pulling at the ends, the strain can be defined as the ratio between the amount of stretching and the original length of the band: