enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skolem problem - Wikipedia

    en.wikipedia.org/wiki/Skolem_problem

    In mathematics, the Skolem problem is the problem of determining whether the values of a constant-recursive sequence include the number zero. The problem can be formulated for recurrences over different types of numbers, including integers, rational numbers, and algebraic numbers.

  3. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  5. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  6. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The ordinary generating function of a sequence can be expressed as a rational function (the ratio of two finite-degree polynomials) if and only if the sequence is a linear recursive sequence with constant coefficients; this generalizes the examples above. Conversely, every sequence generated by a fraction of polynomials satisfies a linear ...

  7. P-recursive equation - Wikipedia

    en.wikipedia.org/wiki/P-recursive_equation

    The sequences which are solutions of these equations are called holonomic, P-recursive or D-finite. From the late 1980s, the first algorithms were developed to find solutions for these equations. Sergei A. Abramov, Marko Petkovšek and Mark van Hoeij described algorithms to find polynomial, rational, hypergeometric and d'Alembertian solutions.

  8. Iterated function - Wikipedia

    en.wikipedia.org/wiki/Iterated_function

    The sequence of functions f n is called a Picard sequence, [8] [9] named after Charles Émile Picard. For a given x in X, the sequence of values f n (x) is called the orbit of x. If f n (x) = f n+m (x) for some integer m > 0, the orbit is called a periodic orbit. The smallest such value of m for a given x is called the period of the orbit.

  9. Lucas sequence - Wikipedia

    en.wikipedia.org/wiki/Lucas_sequence

    Lucas sequences are used in probabilistic Lucas pseudoprime tests, which are part of the commonly used Baillie–PSW primality test. Lucas sequences are used in some primality proof methods, including the Lucas–Lehmer–Riesel test, and the N+1 and hybrid N−1/N+1 methods such as those in Brillhart-Lehmer-Selfridge 1975. [4]