enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  3. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    This formula says that the zeros of the Riemann zeta function control the oscillations of primes around their "expected" positions. Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line s = 1/2 + it, and he knew that all of its non-trivial zeros must lie in the range 0 ≤ Re(s) ≤ 1.

  4. Riemann–Siegel formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Siegel_formula

    Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.

  6. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  7. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In 1859 Bernhard Riemann used complex analysis and a special meromorphic function now known as the Riemann zeta function to derive an analytic expression for the number of primes less than or equal to a real number x. Remarkably, the main term in Riemann's formula was exactly the above integral, lending substantial weight to Gauss's conjecture.

  8. Bernhard Riemann - Wikipedia

    en.wikipedia.org/wiki/Bernhard_Riemann

    Riemann's essay was also the starting point for Georg Cantor's work with Fourier series, which was the impetus for set theory. He also worked with hypergeometric differential equations in 1857 using complex analytical methods and presented the solutions through the behaviour of closed paths about singularities (described by the monodromy matrix ).

  9. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    A Riemann sum of over [,] with partition is defined as = = () ... A generalized midpoint rule formula, also known as the enhanced midpoint integration, ...