Search results
Results from the WOW.Com Content Network
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
The classic merge outputs the data item with the lowest key at each step; given some sorted lists, it produces a sorted list containing all the elements in any of the input lists, and it does so in time proportional to the sum of the lengths of the input lists. Denote by A[1..p] and B[1..q] two arrays sorted in increasing order.
The following pseudocode demonstrates an algorithm that merges input lists (either linked lists or arrays) A and B into a new list C. [ 1 ] [ 2 ] : 104 The function head yields the first element of a list; "dropping" an element means removing it from its list, typically by incrementing a pointer or index.
It then merges each of the resulting lists of two into lists of four, then merges those lists of four, and so on; until at last two lists are merged into the final sorted list. [24] Of the algorithms described here, this is the first that scales well to very large lists, because its worst-case running time is O( n log n ).
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
An alternative to reduce the copying into multiple lists is to associate a new field of information with each key (the elements in m are called keys). This field will be used to link the keys and any associated information together in a sorted list (a key and its related information is called a record).
1. Chocolate Fondue. Think of that fondue fountain at the buffet as Willy Wonka's sacred chocolate waterfall and river. The chocolate must go untouched by human hands, or it will be ruined.
In the most balanced case, each time we perform a partition we divide the list into two nearly equal pieces. This means each recursive call processes a list of half the size. Consequently, we can make only log 2 n nested calls before we reach a list of size 1. This means that the depth of the call tree is log 2 n.