Search results
Results from the WOW.Com Content Network
The presence of ethanol can lead to the formations of non-lamellar phases also known as non-bilayer phases. Ethanol has been recognized as being an excellent solvent in an aqueous solution for inducing non-lamellar phases in phospholipids. The formation of non-lamellar phases in phospholipids is not completely understood, but it is significant ...
Pages in category "Ethanol" The following 18 pages are in this category, out of 18 total. ... Ethanol-induced non-lamellar phases in phospholipids; K. Kilju; P.
This is a list of companies either based or with large operations in the Philadelphia and greater Delaware Valley region area of the United States. Active companies headquartered in the region [ edit ]
This list may not reflect recent changes. ... Ethanol-induced non-lamellar phases in phospholipids; F. ... a non-profit organization.
Phase behavior Triple point: 150 K (−123 °C), 0.00043 Pa Critical point: 514 K (241 °C), 63 bar Std enthalpy change of fusion, Δ fus H o +4.9 kJ/mol
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Lipid molecules in the HII phase pack inversely to the packing observed in the hexagonal I phase described above. This phase has the polar head groups on the inside and the hydrophobic, hydrocarbon tails on the outside in solution. The packing ratio for this phase is larger than one, [1] which is synonymous with an inverse cone packing.
Apparently clear single phase formulations can still consist of multiple iso-tropic phases (e.g. the apparently clear heptane/AOT/water microemulsions consist multiple phases). Since these systems can be in equilibrium with other phases, many systems, especially those with high volume fractions of both the two imiscible phases, can be easily ...