Search results
Results from the WOW.Com Content Network
Porosity of subsurface soil is lower than in surface soil due to compaction by gravity. Porosity of 0.20 is considered normal for unsorted gravel size material at depths below the biomantle. Porosity in finer material below the aggregating influence of pedogenesis can be expected to approximate this value. Soil porosity is complex.
The pore space of soil contains the liquid and gas phases of soil, i.e., everything but the solid phase that contains mainly minerals of varying sizes as well as organic compounds. In order to understand porosity better a series of equations have been used to express the quantitative interactions between the three phases of soil.
Soil bulk density, when determined at standardized moisture conditions, is an estimate of soil compaction. [3] Soil porosity consists of the void part of the soil volume and is occupied by gases or water. Soil consistency is the ability of soil materials to stick together. Soil temperature and colour are self-defining.
Soil morphology is the branch of soil science dedicated to the technical description of soil, [1] particularly physical properties including texture, color, structure, and consistence. Morphological evaluations of soil are typically performed in the field on a soil profile containing multiple horizons .
Micro CT of porous medium: Pores of the porous medium shown as purple color and impermeable porous matrix shown as green-yellow color. Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology (such as pore shape, surface roughness, and tortuosity of pore channels) of a porous medium.
Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile.The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water. [2]
However, there is also a concept of closed porosity and effective porosity, i.e. the pore space accessible to flow. Many natural substances such as rocks and soil (e.g. aquifers, petroleum reservoirs), zeolites, biological tissues (e.g. bones, wood, cork), and man made materials such as cements and ceramics can be considered as porous media ...
This page was last edited on 30 March 2016, at 21:35 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...