enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    the equation indicates that the decay constant λ has units of t −1, and can thus also be represented as 1/ τ, where τ is a characteristic time of the process called the time constant. In a radioactive decay process, this time constant is also the mean lifetime for decaying atoms.

  3. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.

  4. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ = / Bq = Hz = s −1

  5. Decay correction - Wikipedia

    en.wikipedia.org/wiki/Decay_correction

    The formula for decay ... and "t" is the elapsed time. The decay ... where "/" is the half-life of the radioactive material of interest. Example. The decay correct ...

  6. Specific activity - Wikipedia

    en.wikipedia.org/wiki/Specific_activity

    The integral solution is described by exponential decay: =, where N 0 is the initial quantity of atoms at time t = 0. Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:

  7. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  8. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A more intuitive characteristic of exponential decay for many people is the time required for the decaying quantity to fall to one half of its initial value. (If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be ...

  9. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In radioactive decay the time constant is related to the decay constant (λ), and it represents both the mean lifetime of a decaying system (such as an atom) before it decays, or the time it takes for all but 36.8% of the atoms to decay. For this reason, the time constant is longer than the half-life, which is the time for only 50% of the atoms ...