Search results
Results from the WOW.Com Content Network
Lithium–silicon batteries are lithium-ion batteries that employ a silicon-based anode, and lithium ions as the charge carriers. [1] Silicon based materials, generally, have a much larger specific capacity, for example, 3600 mAh/g for pristine silicon. [ 2 ]
A solid-state silicon battery or silicon-anode all-solid-state battery is a type of rechargeable lithium-ion battery consisting of a solid electrolyte, solid cathode, and silicon-based solid anode. [1] [2] In solid-state silicon batteries, lithium ions travel through a solid electrolyte from a positive cathode to a negative silicon anode. While ...
Silicon-based anodes have also been researched, namely for their higher theoretical capacity than that of graphite. [ 8 ] [ 19 ] Silicon-based anodes have high reaction rates with the electrolyte, low volumetric capacity and an extremely large volume expansion during cycling. [ 12 ]
Solid lithium (Li) metal anodes in solid-state batteries are replacement candidates in lithium-ion batteries for higher energy densities, safety, and faster recharging times. Such anodes tend to suffer from the formation and the growth of Li dendrites, non-uniform metal growths which penetrate the electrolyte leading to electrical short circuits.
In addition to carbon- and silicon- based anode materials for lithium-ion batteries, high-entropy metal oxide materials are being developed. These conversion (rather than intercalation) materials comprise an alloy (or subnanometer mixed phases) of several metal oxides performing different functions.
An anode using germanium nanowire was claimed to have the ability to increase the energy density and cycle durability of lithium-ion batteries. Like silicon, germanium has a high theoretical capacity (1600 mAh g-1), expands during charging, and disintegrates after a small number of cycles.
The latter damages the battery and reduces the amount of lithium available for charging. Reduced intercalation limits capacity. Carbon based anodes have a gravimetric capacity of 372 mAh/g for LiC 6. [2] The specific capacity of silicon is approximately ten times greater than carbon.
The ability for lithium ions to intercalate into silicon structures renders various Si nanostructures of interest towards applications as anodes in Li-ion batteries (LiBs). SiNWs are of particular merit as such anodes as they exhibit the ability to undergo significant lithiation while maintaining structural integrity and electrical connectivity.