Search results
Results from the WOW.Com Content Network
The th principal eigenvector of a graph is defined as either the eigenvector corresponding to the th largest or th smallest eigenvalue of the Laplacian. The first principal eigenvector of the graph is also referred to merely as the principal eigenvector.
In general, an eigenvector of a linear operator D defined on some vector space is a nonzero vector in the domain of D that, when D acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where D is defined on a function space, the eigenvectors are referred to as eigenfunctions.
If A is a N × N matrix, X a non-zero vector, and λ is a scalar, such that =, then the scalar λ is said to be an eigenvalue of A and the vector X is said to be the eigenvector corresponding to λ. Together with the zero vector, the set of all eigenvectors corresponding to a given eigenvalue λ form a subspace of C n , which is called the ...
The k-th principal component of a data vector x (i) can therefore be given as a score t k(i) = x (i) ⋅ w (k) in the transformed coordinates, or as the corresponding vector in the space of the original variables, {x (i) ⋅ w (k)} w (k), where w (k) is the kth eigenvector of X T X. The full principal components decomposition of X can therefore ...
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.
It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector, energy eigenstate, energy eigenfunction, or energy eigenket. It is very similar to the concept of atomic orbital and molecular orbital in chemistry, with some slight differences explained below.
The corresponding eigenvector (which physicists call an eigenstate) with eigenvalue 1 kg⋅m/s would be a quantum state with a definite, well-defined value of momentum of 1 kg⋅m/s, with no quantum uncertainty. If its momentum were measured, the result is guaranteed to be 1 kg⋅m/s.
In linear algebra, it is often important to know which vectors have their directions unchanged by a given linear transformation. An eigenvector (/ ˈ aɪ ɡ ən-/ EYE-gən-) or ch