Search results
Results from the WOW.Com Content Network
This is convenient because one pound mass exerts one pound force due to gravity. Note, however, unlike the other systems the force unit is not equal to the mass unit multiplied by the acceleration unit [ 11 ] —the use of Newton's second law , F = m ⋅ a , requires another factor, g c , usually taken to be 32.174049 (lb⋅ft)/(lbf⋅s 2 ).
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
Systems of measure either define mass and derive a force unit or define a base force and derive a mass unit [1] (cf. poundal, a derived unit of force in a mass-based system). A slug is defined as a mass that is accelerated by 1 ft/s 2 when a net force of one pound (lbf) is exerted on it.
Since a pound of force (pound force) accelerates a pound of mass at 32.174 049 ft/s 2 (9.80665 m/s 2; the acceleration of gravity, g), we can scale down the unit of force to compensate, giving us one that accelerates 1 pound mass at 1 ft/s 2 rather than at 32.174 049 ft/s 2; and that is the poundal, which is approximately 1 ⁄ 32 pound force.
The pound or pound-mass is a unit of mass used in both the British imperial and United States customary systems of measurement. Various definitions have been used; the most common today is the international avoirdupois pound, which is legally defined as exactly 0.453 592 37 kilograms , and which is divided into 16 avoirdupois ounces . [ 1 ]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
"According to Webster’s Dictionary of the English Language Unabridged “Encyclopedic Edition”, J. G. Ferguson Publishing Company, 1977; a foot-pound is the energy required to lift a 1 pound mass the height of 1 foot." does make sense--and it uses the term foot-pound, not foot-pound force. More support for the former term.