enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Face Recognition Vendor Test - Wikipedia

    en.wikipedia.org/wiki/Face_Recognition_Vendor_Test

    The FRGC was a separate algorithm development project designed to promote and advance face recognition technology that supports existing face recognition efforts in the U.S. Government. One of the objectives of the FRGC was to develop face recognition algorithms capable of performance an order of magnitude better than FRVT 2002.

  3. DeepFace - Wikipedia

    en.wikipedia.org/wiki/DeepFace

    DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.

  4. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]

  5. Face detection - Wikipedia

    en.wikipedia.org/wiki/Face_detection

    It is analogous to image detection in which the image of a person is matched bit by bit. Image matches with the image stores in database. Any facial feature changes in the database will invalidate the matching process. [3] A reliable face-detection approach based on the genetic algorithm and the eigen-face [4] technique:

  6. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    Our task is to make a binary decision: whether it is a photo of a standardized face (frontal, well-lit, etc) or not. Viola–Jones is essentially a boosted feature learning algorithm, trained by running a modified AdaBoost algorithm on Haar feature classifiers to find a sequence of classifiers ,,...,. Haar feature classifiers are crude, but ...

  7. FindFace - Wikipedia

    en.wikipedia.org/wiki/FindFace

    FindFace is a face recognition technology developed by the Russian company NtechLab that specializes in neural network tools. The company provides a line of services for the state and various business sectors based on FindFace algorithm.

  8. Landmark detection - Wikipedia

    en.wikipedia.org/wiki/Landmark_detection

    This algorithm is very slow but better ones have been proposed such as the project out inverse compositional (POIC) algorithm and the simultaneous inverse compositional (SIC) algorithm. [5] Learning-based fitting methods use machine learning techniques to predict the facial coefficients.

  9. Eigenface - Wikipedia

    en.wikipedia.org/wiki/Eigenface

    Eigenface provides an easy and cheap way to realize face recognition in that: Its training process is completely automatic and easy to code. Eigenface adequately reduces statistical complexity in face image representation. Once eigenfaces of a database are calculated, face recognition can be achieved in real time.