enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    For isolated systems, no energy is provided by the surroundings and the second law requires that the entropy of the system alone must increase: ΔS > 0. Examples of spontaneous physical processes in isolated systems include the following: 1) Heat can be transferred from a region of higher temperature to a lower temperature (but not the reverse).

  3. Heat sink - Wikipedia

    en.wikipedia.org/wiki/Heat_sink

    A heat sink (also commonly spelled heatsink, [1]) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature.

  4. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    Following this observation, one may interpret the heat equation as imposing an infinitesimal averaging of a function. Given a solution of the heat equation, the value of u(x, t + τ) for a small positive value of τ may be approximated as ⁠ 1 / 2n ⁠ times the average value of the function u(⋅, t) over a sphere of very small radius ...

  5. Heat pump and refrigeration cycle - Wikipedia

    en.wikipedia.org/wiki/Heat_pump_and...

    A heat pump is a mechanical system that transmits heat from one location (the "source") at a certain temperature to another location (the "sink" or "heat sink") at a higher temperature. [2] Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink (as when warming the inside of a home on a cold day), or a ...

  6. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat ...

  7. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    The same is true for its entropy, so the entropy increase S 2 − S 1 of our system after one cycle is given by the reduction of entropy of the hot source and the increase of the cold sink. The entropy increase of the total system S 2 - S 1 is equal to the entropy production S i due to irreversible processes in the engine so = +. The Second law ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Carnot cycle - Wikipedia

    en.wikipedia.org/wiki/Carnot_cycle

    A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...