Search results
Results from the WOW.Com Content Network
As exchanging the indices of an array is the essence of array transposition, an array stored as row-major but read as column-major (or vice versa) will appear transposed. As actually performing this rearrangement in memory is typically an expensive operation, some systems provide options to specify individual matrices as being stored transposed.
In computer science, an array is a data structure consisting of a collection of elements (values or variables), of same memory size, each identified by at least one array index or key. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula.
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A,I,V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
Array, a sequence of elements of the same type stored contiguously in memory; Record (also called a structure or struct), a collection of fields Product type (also called a tuple), a record in which the fields are not named; String, a sequence of characters representing text; Union, a datum which may be one of a set of types
Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.
An array with stride of exactly the same size as the size of each of its elements is contiguous in memory. Such arrays are sometimes said to have unit stride . Unit stride arrays are sometimes more efficient than non-unit stride arrays, but non-unit stride arrays can be more efficient for 2D or multi-dimensional arrays , depending on the ...
For example, if an array of integers is stored in a region of the computer's memory starting at the memory cell with address 3000 (the base address), and each integer occupies four cells (bytes), then the elements of this array are at memory locations 0x3000, 0x3004, 0x3008, …, 0x3000 + 4(n − 1) (note the zero-based numbering).
The tiled storage of AoSoA aligns the memory access pattern to the requests' fixed width, leading to fewer access operations to complete a memory request and thus increasing the efficiency. [ 4 ] For example, to store N points in 3D space using an array of structures of arrays with a SIMD register width of 8 floats (or 8×32 = 256 bits):