Search results
Results from the WOW.Com Content Network
ATP can be produced by a number of distinct cellular processes; the three main pathways in eukaryotes are (1) glycolysis, (2) the citric acid cycle/oxidative phosphorylation, and (3) beta-oxidation. The overall process of oxidizing glucose to carbon dioxide , the combination of pathways 1 and 2, known as cellular respiration , produces about 30 ...
The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.
This produces 2 ATP molecules per glucose molecule, or about 5% of glucose's energy potential (38 ATP molecules in bacteria). But the speed at which ATP is produced in this manner is about 100 times that of oxidative phosphorylation.
All organisms produce a phosphate compound, ATP, which is the universal energy currency of life. In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain .
Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...
Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.
ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine ... binding the newly produced ATP molecule with very high affinity ...
ATP–CP system (phosphagen system) – At maximum intensity, this system is used for up to 10–15 seconds. [5] The ATP–CP system neither uses oxygen nor produces lactic acid if oxygen is unavailable and is thus called alactic anaerobic. This is the primary system behind very short, powerful movements like a golf swing, a 100 m sprint or ...