Search results
Results from the WOW.Com Content Network
However, some of the early successes of molecular engineering have come in the fields of immunotherapy, synthetic biology, and printable electronics (see molecular engineering applications). Molecular engineering is a dynamic and evolving field with complex target problems; breakthroughs require sophisticated and creative engineers who are ...
More recent theoretical work [15] analyzes a complete set of nine molecular tools made from hydrogen, carbon and germanium able to (a) synthesize all tools in the set (b) recharge all tools in the set from appropriate feedstock molecules and (c) synthesize a wide range of stiff hydrocarbons (diamond, graphite, fullerenes, and the like). All ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Download QR code; Print/export Download as PDF; Printable version; In other projects Appearance. move to sidebar ...
Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of molecular building blocks to fabricate electronic components.
In chemical biology and biomolecular engineering, rational design (RD) is an umbrella term which invites the strategy of creating new molecules with a certain functionality, based upon the ability to predict how the molecule's structure (specifically derived from motifs) will affect its behavior through physical models.
Reptation theory describes the effect of polymer chain entanglements on the relationship between molecular mass and chain relaxation time. The theory predicts that, in entangled systems, the relaxation time τ is proportional to the cube of molecular mass, M: τ ∝ M 3. The prediction of the theory can be arrived at by a relatively simple ...
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.