Search results
Results from the WOW.Com Content Network
Inner ear regeneration is the biological process by which the hair cells and supporting cells (i.e. Hensen's cells and Deiters cells) of the ear proliferate (cell proliferation) and regrow after hair cell injury. This process depends on communication between supporting cells and the brain.
The internal auditory meatus provides a passage through which the vestibulocochlear nerve (CN VIII), the facial nerve (CN VII), and the labyrinthine artery (an internal auditory branch of the anterior inferior cerebellar artery in 85% of people) can pass from inside the skull to structures of the inner ear and face.
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates , the inner ear is mainly responsible for sound detection and balance. [ 1 ] In mammals , it consists of the bony labyrinth , a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [ 2 ]
Tonotopy in the auditory system begins at the cochlea, the small snail-like structure in the inner ear that sends information about sound to the brain. Different regions of the basilar membrane in the organ of Corti , the sound-sensitive portion of the cochlea, vibrate at different sinusoidal frequencies due to variations in thickness and width ...
Sound is transmitted to the inner ear via vibration of the tympanic membrane, leading to movement of the middle ear bones (malleus, incus, and stapes). Movement of the stapes on the oval window generates a pressure wave in the perilymph within the cochlea, causing the basilar membrane to vibrate. Sounds of different frequencies vibrate ...
A study on the mesonephros and endolymphatic sac in mice highlighted the importance of cellular senescence for eventual morphogenesis of the embryonic kidney and the inner ear, respectively. [ 73 ] They serve to direct tissue repair and regeneration. [ 29 ]
Perilymph and endolymph have unique ionic compositions suited to their functions in regulating electrochemical impulses of hair cells necessary for hearing. The electric potential of endolymph is ~80-90 mV more positive than perilymph due to a higher concentration of potassium cations (K +) in endolymph and higher sodium (Na +) in perilymph. [4]
In medicine, an ossicular replacement prosthesis is a device intended to be implanted for the functional reconstruction of segments of the ossicles and facilitates the conduction of sound waves from the tympanic membrane to the inner ear. [1]