enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    In mathematics, the associative property [1] is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .

  3. Operator associativity - Wikipedia

    en.wikipedia.org/wiki/Operator_associativity

    An operation that is mathematically associative, by definition requires no notational associativity. (For example, addition has the associative property, therefore it does not have to be either left associative or right associative.) An operation that is not mathematically associative, however, must be notationally left-, right-, or non ...

  4. Binary operation - Wikipedia

    en.wikipedia.org/wiki/Binary_operation

    The first three examples above are commutative and all of the above examples are associative. On the set of real numbers R {\displaystyle \mathbb {R} } , subtraction , that is, f ( a , b ) = a − b {\displaystyle f(a,b)=a-b} , is a binary operation which is not commutative since, in general, a − b ≠ b − a {\displaystyle a-b\neq b-a} .

  5. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative , [ 10 ] even when the product remains defined after changing the order of the factors.

  6. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  7. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  8. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The associative property is closely related to the commutative property. The associative property of an expression containing two or more occurrences of the same operator states that the order operations are performed in does not affect the final result, as long as the order of terms does not change. In contrast, the commutative property states ...

  9. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    For example, in elementary arithmetic, one has (+) = + (). Therefore, one would say that multiplication distributes over addition . This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers , polynomials , matrices , rings , and fields .