Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Bulk modulus, a measure of compression resistance; Elastic modulus, a measure of stiffness; Shear modulus, a measure of elastic stiffness; Young's modulus, a specific elastic modulus; Modulo operation (a % b, mod(a, b), etc.), in both math and programming languages; results in remainder of a division; Casting modulus used in Chvorinov's rule.
and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general.
In modulus 12, one can assert that: 38 ≡ 14 (mod 12) because the difference is 38 − 14 = 24 = 2 × 12, a multiple of 12. Equivalently, 38 and 14 have the same remainder 2 when divided by 12. The definition of congruence also applies to negative values. For example:
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
In quantum field theory, the term moduli (sg.: modulus; more properly moduli fields) is sometimes used to refer to scalar fields whose potential energy function has continuous families of global minima. Such potential functions frequently occur in supersymmetric systems.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.