Search results
Results from the WOW.Com Content Network
In aviation, equivalent airspeed (EAS) is calibrated airspeed (CAS) corrected for the compressibility of air at a non-trivial Mach number. It is also the airspeed at sea level in the International Standard Atmosphere at which the dynamic pressure is the same as the dynamic pressure at the true airspeed (TAS) and altitude at which the aircraft ...
Actual cubic feet per minute (ACFM) is a unit of volumetric flow. It is commonly used by manufacturers of blowers and compressors. [1] This is the actual gas delivery with reference to inlet conditions, whereas cubic foot per minute (CFM) is an unqualified term and should only be used in general and never accepted as a specific definition without explanation.
A free windows calculator which converts between various airspeeds (true / equivalent / calibrated) according to the appropriate atmospheric (standard and not standard!) conditions; A free android calculator which converts various airspeeds according to atmospheric characteristics; Newbyte airspeed converter
For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating ...
At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3. The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa: [citation needed]
Siacci found that within a low-velocity restricted zone, projectiles of similar shape, and velocity in the same air density behave similarly; or . Siacci used the variable for ballistic coefficient. Meaning, air density is the generally the same for flat-fire trajectories, thus sectional density is equal to the ballistic coefficient and air ...
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., Z n = 1 {\displaystyle Z_{n}=1} ).
A chart of velocity versus load factor (or V-n diagram) is another way of showing limits of aircraft performance. It shows how much load factor can be safely achieved at different airspeeds. [3] At higher temperatures, air is less dense and planes must fly faster to generate the same amount of lift.