enow.com Web Search

  1. Ads

    related to: penrose periodic tiling
  2. tilebar.com has been visited by 10K+ users in the past month

    • Sample Bundles

      Looking for the latest tile trends?

      Order a Sample Bundle for $5.

    • Shop Online

      Choose from various Styles,

      Materials, Colours, Patterns & More

Search results

  1. Results from the WOW.Com Content Network
  2. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    A Penrose tiling with rhombi exhibiting fivefold symmetry. A Penrose tiling is an example of an aperiodic tiling.Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches.

  3. Aperiodic tiling - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_tiling

    An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non-periodic tilings. The Penrose tilings are a well-known example of aperiodic tilings. [1] [2]

  4. List of aperiodic sets of tiles - Wikipedia

    en.wikipedia.org/.../List_of_aperiodic_sets_of_tiles

    In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles). [1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself.

  5. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    However, an aperiodic set of tiles can only produce non-periodic tilings. [1] [2] Infinitely many distinct tilings may be obtained from a single aperiodic set of tiles. [3] The best-known examples of an aperiodic set of tiles are the various Penrose tiles. [4] [5] The known aperiodic sets of prototiles are seen on the list of aperiodic sets of ...

  6. Substitution tiling - Wikipedia

    en.wikipedia.org/wiki/Substitution_tiling

    Some substitution tilings are periodic, defined as having translational symmetry. Every substitution tiling (up to mild conditions) can be "enforced by matching rules"—that is, there exist a set of marked tiles that can only form exactly the substitution tilings generated by the system. The tilings by these marked tiles are necessarily aperiodic.

  7. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    Furthermore, the "spectre" tile is a "strictly chiral" aperiodic monotile: even if reflections are allowed, every tiling is non-periodic and uses only one chirality of the spectre. That is, there are no tilings of the plane that use both the spectre and its mirror image.

  8. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    A periodic tiling has a repeating pattern. Some special kinds include regular tilings with regular polygonal tiles all of the same shape, and semiregular tilings with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that ...

  9. Quasicrystal - Wikipedia

    en.wikipedia.org/wiki/Quasicrystal

    As further aperiodic sets of tiles were discovered, sets with fewer and fewer shapes were found. In 1974 Roger Penrose discovered a set of just two tiles, now referred to as Penrose tiles, that produced only non-periodic tilings of the plane. These tilings displayed instances of fivefold symmetry.

  1. Ads

    related to: penrose periodic tiling