enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Euclidean space was introduced by ancient Greeks as an abstraction of our physical space. Their great innovation, appearing in Euclid's Elements was to build and prove all geometry by starting from a few very basic properties, which are abstracted from the physical world, and cannot be mathematically proved because of the lack of more basic tools.

  3. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]

  4. Minkowski–Bouligand dimension - Wikipedia

    en.wikipedia.org/wiki/Minkowski–Bouligand...

    Estimating the box-counting dimension of the coast of Great Britain. In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box-counting dimension, is a way of determining the fractal dimension of a bounded set in a Euclidean space, or more generally in a metric space (,).

  5. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.

  6. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .

  7. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non ...

  8. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.

  9. Cayley–Menger determinant - Wikipedia

    en.wikipedia.org/wiki/Cayley–Menger_determinant

    In simpler terms, if every subset of + points can be isometrically embedded in an -dimensional, but not generally ()-dimensional Euclidean space, then the semi-metric is Euclidean of dimension unless consists of exactly + points and the Cayley–Menger determinant on those + points is strictly negative.