Search results
Results from the WOW.Com Content Network
Both currents redistribute mass and heat along the stream current system along Madagascar's coast. [1] The North Madagascar Current flows into the South Equatorial Current just north of Madagascar and is directed into the Mozambique Channel, this connects to the gyre's equatorial currents into the Agulhas Current off the coast of Southeastern ...
Cyclonic eddies rotate anticlockwise (clockwise) in the Northern (Southern) hemisphere and have a cold core. Anticyclonic eddies rotate clockwise (anticlockwise) in the Northern (Southern) hemisphere and have a warm core. The temperature and salinity difference between the eddy core and the surrounding waters is the key element driving vertical ...
The Great Whirl is a huge anti-cyclonic eddy generated by the Somali current flowing in (northern) summer, and one of the two gigantic Indian Ocean Gyres (the other is the Socotra Gyre). The Great Whirl can be observed between 5-10°N and 52-57°E off the Somali coast in the summer season, a location typically around 200 km southwest of the ...
A northern-hemisphere gyre in geostrophic balance. Paler water is less dense than dark water, but more dense than air; the outwards pressure gradient is balanced by the 90 degrees-right-of-flow coriolis force. The structure will eventually dissipate due to friction and mixing of water properties.
The Loop Current is an extension of the western boundary current of the North Atlantic subtropical gyre. [1] Serving as the dominant circulation feature in the Eastern Gulf of Mexico, the Loop Currents transports between 23 and 27 sverdrups [2] and reaches maximum flow speeds of from 1.5 to 1.8 meters/second. [3]
Eddies normally travel around one mile per day in these areas; the smoke rings covered five to 10 miles per day and lasted for about six months before splitting up.
The Gulf of Alaska coastal area includes the offshore Alaska Current, Alaskan Stream, Alaska Coastal Current and some eddies. In the eastern part of the Gulf of Alaska, the Alaska Current flows counterclockwise, and it is relatively wide (> 100 km) meandering and slow (3–6 m/min). [1]
The eddies appeared to be caused mostly by topography (particularly islands), wind, and instabilities in the current. These eddies lay mainly between the California Current (flowing toward the equator) and the coastline. [3] The majority of these eddies were cyclonic and had the ability to induce the upwelling of nutrient-rich water.