enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    Depth only increases when the root is split, maintaining balance. Similarly, a B-tree is kept balanced after deletion by merging or redistributing keys among siblings to maintain the -key minimum for non-root nodes. A merger reduces the number of keys in the parent potentially forcing it to merge or redistribute keys with its siblings, and so on.

  3. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Self-balancing binary search trees provide efficient implementations for mutable ordered lists , and can be used for other abstract data structures such as associative arrays , priority queues and sets .

  4. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2. If the two trees have the balanced weight, Join simply create a new node with left subtree t 1, root k and ...

  5. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    Several set operations have been defined on weight-balanced trees: union, intersection and set difference. The union of two weight-balanced trees t 1 and t 2 representing sets A and B, is a tree t that represents A ∪ B. The following recursive function computes this union:

  6. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  7. WAVL tree - Wikipedia

    en.wikipedia.org/wiki/WAVL_tree

    WAVL trees are named after AVL trees, another type of balanced search tree, and are closely related both to AVL trees and red–black trees, which all fall into a common framework of rank balanced trees. Like other balanced binary search trees, WAVL trees can handle insertion, deletion, and search operations in time O(log n) per operation. [1] [2]

  8. k-way merge algorithm - Wikipedia

    en.wikipedia.org/wiki/K-way_merge_algorithm

    In the beginning, the tree is first created in time Θ(k). In each step of merging, only the games on the path from the new element to the root need to be replayed. In each layer, only one comparison is needed. As the tree is balanced, the path from one of the input arrays to the root contains only Θ(log k) elements.

  9. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    A skip list does not provide the same absolute worst-case performance guarantees as more traditional balanced tree data structures, because it is always possible (though with very low probability [5]) that the coin-flips used to build the skip list will produce a badly balanced structure. However, they work well in practice, and the randomized ...