Search results
Results from the WOW.Com Content Network
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism, Ørsted's law, also spelled Oersted's law, is the physical law stating that an electric current induces a magnetic field. [2]
The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.
[6] [7] He investigated and discovered the rules which govern the field around a straight current-carrying wire: [8] The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses.
When electricity flows (with direction given by conventional current) in a long straight wire, it creates a cylindrical magnetic field around the wire according to the right-hand rule. The conventional direction of a magnetic line is given by a compass needle. Electromagnet: The magnetic field around a wire is relatively weak. If the wire is ...
Two current-carrying wires attract each other magnetically: The bottom wire has current I 1, which creates magnetic field B 1. The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which ...
The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. [2] A coil forming the shape of a straight tube (a helix) is called a solenoid. [1] [2] The direction of the magnetic field through a coil of wire can be found from a form of the right-hand rule.
The advantage of using the coil shape is that it increases the strength of the magnetic field produced by a given current. The magnetic fields generated by the separate turns of wire all pass through the center of the coil and add to produce a strong field there. [3] The greater the number of turns of wire, the stronger the field produced.
The application of this law implicitly relies on the superposition principle for magnetic fields, i.e. the fact that the magnetic field is a vector sum of the field created by each infinitesimal section of the wire individually. [6] For example, consider the magnetic field of a loop of radius carrying a current .