Search results
Results from the WOW.Com Content Network
Traditionally, double bond stereochemistry was described as either cis (Latin, on this side) or trans (Latin, across), in reference to the relative position of substituents on either side of a double bond. A simple example of cis–trans isomerism is the 1,2-disubstituted ethenes, like the dichloroethene (C 2 H 2 Cl 2) isomers shown below. [7]
In LCP theory a lone pair is treated as a ligand. Gillespie terms the lone pair a lone pair domain and states that these lone pair domains push the ligands together until they reach the interligand distance predicted by the relevant inter-ligand radii. [1]
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
COOH, R, NH 2 and H (where R is the side-chain) are arranged around the chiral center carbon atom. With the hydrogen atom away from the viewer, if the arrangement of the CO → R → N groups around the carbon atom as center is counter-clockwise, then it is the L form. [ 14 ]
A molecule may contain any number of stereocenters and any number of double bonds, and each usually gives rise to two possible isomers. A molecule with an integer n describing the number of stereocenters will usually have 2 n stereoisomers, and 2 n−1 diastereomers each having an associated pair of enantiomers.
Atropisomers of 6,6'-dinitro-2,2'-diphenic acid were first experimentally described case, by Christie and Kenner (1922). Atropisomers are stereoisomers arising because of hindered rotation about a single bond, where energy differences due to steric strain or other contributors create a barrier to rotation that is high enough to allow for isolation of individual rotamers.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
E–Z configuration, or the E–Z convention, is the IUPAC preferred method of describing the absolute stereochemistry of double bonds in organic chemistry.It is an extension of cis–trans isomer notation (which only describes relative stereochemistry) that can be used to describe double bonds having two, three or four substituents.